
DeepGate: Hardware-

Accelerated Speech Recognition

System

Lindsay Davis, Estella Gong, Michael Lopez-

Brau, and Cedric Orban

Department of Electrical and Computer

Engineering, University of Central Florida,

Orlando, Florida, 32816-2450

Abstract — This paper presents the design and
implementation of DeepGate, a feedforward, deep neural
network (DNN) on a low-cost field-programmable gate array
(FPGA) for speech classification of a small vocabulary. We
discuss our algorithmic approach as well as the limitations
that are incurred from using a low-cost FPGA. These
limitations are fleshed out in greater detail by an analysis of
the firmware programming on the FPGA. Furthermore, we
discuss the classifier as a hardware-accelerated DNN, jointly
powered by the FPGA and off-board processor. Lastly, we
review the printed circuit board (PCB) that we developed to
house the FPGA.

Index Terms — FPGA, hardware acceleration, neural
network, speech recognition.

I. INTRODUCTION

 People have the remarkable ability to make vast

inferences about the world with little information. A prime

example of this is language: how are humans able to

effectively use language, an unfathomably flexible and

vague form of communication, to develop and exchange

ideas? Is it possible to train machines to communicate or at

least understand the vagueness of natural language? These

questions and many like them have piqued the interest of

many linguists, computer scientists, and engineers, leading

to research thrusts in computational linguistics and natural

language processing.

 At the intersection of these two fields, numerous

algorithms and heuristics have been developed in the

search to find the one most optimal for practical speech

recognition. Recent advances in hardware have caused a

resurgence in the development of deep neural network

(DNN) modeling, now commonly known as deep learning.

In the past, neural network models with many hidden

layers were unfeasible due to their computational

complexity and their need for data. Today, many of the

most common deep learning algorithms can be run on a

middle-to-high end laptop. These algorithms have become

very popular as of late due to their ability to dominate

other machine learning algorithms on almost every

benchmark. We have noticed that these algorithms also

perform exceptionally well in the language domain,

particularly in speech recognition.

 We designed a system that mirrors current research

thrusts by implementing this algorithm on a low-cost

FPGA. FPGAs have the advantage of being significantly

cheaper than ASIC variants for small-scale applications.

They also have the ability to run a DNN faster than a CPU

and with less power consumption than a GPU.

 In Section II, we will begin by discussing the design of

the speech classifier, including the dataset we used, data

preprocessing, and the parameterization of the DNN. In

Section III, we review the graphical user interface (GUI)

that the users will use to interact with the system. In

Section IV, we move forward to discussing the

implementation of the DNN on the FPGA and the steps we

took to address our algorithmic constraints. Lastly, Section

V discusses the hardware design and we wrap up with a

conclusion in Section VI.

II. SYSTEM OVERVIEW

The DeepGate Speech Recognition system is the

combination of the implementation of a deep learning

approach on the FPGA chips. The goal of DeepGate is to

create an affordable, energy-efficient, low-cost, compact

speech recognition system that utilizes current research.

Input consists of audio data which will be received through

a user interface. This allows for the user to easily interact

with the system. This FPGA implementation of a neural

network will contain a small vocabulary of pre-registered

words that the user will be able get started with.

DeepGate consists of several parts: data acquisition,

data pre-processing, recognition/decoding, and an

application interface. This in turn makes up our Hardware

and Software Architecture. The high level diagram is

depicted as Figure 1.

A. Data Acquisition Stage

The data acquisition is the audio recording of voice files

through a microphone. These will be sampled at a rate of

16,000 Hz and saved in the WAV file format. These audio

files will allow us to get the user get started with the pre-

registered vocabulary with includes integers from 0 to 9,

as well as the cardinal directions, north, south, east, and

west.

B. Data Pre-Processing Stage

The data pre-processing is accomplished through an

algorithm that will be run on our processor, in this case a

raspberry pi. This includes some filtering as well as

possible digital signal processing. With this stage, the data

is prepared for its utility in the speech recognition.

C. Recognition-Decoding Stage

The recognition/decoding stage is the implementation of

the deep neural network model on the FPGA chip. We also

have a PCB chip that is designed for the FPGA as well as

the additional peripherals we have. This stage will run

through the algorithms and identify perceived matches

within the vocabulary set.

C. Application Stage

 Finally, we have an application that user can interact

with to perform the speech recognition. This will be the

graphical user interface that runs from the raspberry pi. Tis

application allows the user to run training algorithms on

recorded audio data. Output with regards to the speech

recognition will be displayed to the user via the graphical

user interface. In addition, the FPGA LEDs will also

provide user feedback.

Figure 1: High – Level System Overview

II. SPEECH RECOGNITION

 Our speech recognition system involves a pipeline that

begins with a preprocessing stage, a training stage, and a

testing stage. The preprocessing stage and training stages

will be performed on a Raspberry Pi 3. The results from

these stages will be sent to the FPGA, where the testing

stage will then be conducted. This pipeline will be

discussed in greater detail later.

A. Preprocessing

 The preprocessing stage is essential in order to get our

inputs in the ideal format for our classifier. Just as the

semantics of natural language can be finicky, so can

comparing speech signals: even from the same individual.

Speech signals will be initially sampled via a microphone

at 16,000 Hz and stored in a WAV file. We chose our

sampling rate based on the fact that 16,000 Hz captures all

of the details we might want about a particular utterance,

while avoiding the extra computations that would come

with oversampling (i.e., having more samples per signal).

The WAV format was a natural choice for us as it is an

uncompressed file format for audio signals.

 Our dataset currently consists of six people’s speech

sets. Each speech set contain five more subsets, where the

each subset represents that individual saying every word in

our vocabulary once. The data is collected using the

sampling rate and file format mentioned above. We are

always expanding the dataset to increase the

generalizability of our classifier.

 To account for any noise that occurs during

initialization, we scan through the speech signal and look

for the first sample that is greater than or equal to

approximately 40% of the maximum value of the absolute

value of the signal. We set this point as the starting point

and take the next 6999 samples per signal. This heuristic is

necessary in order to achieve a simple, automatic

preprocessing routine that can grant us good classification

results during testing.

 Once we have trimmed our raw signals to 7000 samples,

we partition each signal into a collection of frames and

compute the Mel-frequency cepstrum coefficients (MFCC)

for each frame. MFCCs are features widely used in speech

recognition. They are extracted from audio signals, with

the goal of mimicking certain parts of human speech

perception. In particular, MFCC features mimic the

logarithmic perception of loudness and pitch of human

auditory systems through the use of the Mel scale, which

relates a perceived frequency with its actual frequency.

 For compatibility with our classifier, we scaled the

MFCCs so that they fit between -1 and 1, divided by 2,

and then shifted by half so that our feature vector lies

between 0 and 1. This reduces the chances of the DNN

having saturated inputs into any of the hidden or output

nodes, which are detrimental for learning.

B. Speech Classifier

 As mentioned previously, our speech classifier is a

feedforward DNN tasked with classifying a vocabulary of

14 words. The vocabulary consists of the numbers 0-9 and

the cardinal directions: east, north, south, and west. There

are several other powerful choices that are often employed

in speech recognition systems, such as hidden Markov

models (HMM) and recurrent neural networks (RNN).

These algorithms tend to be quite sophisticated in terms of

implementation and require computational resources that

we do not have with our hardware. Consequently, we

chose to go with a feedforward DNN for our application.

 The network has 516 nodes at the input layer (to

resemble the size of our feature vector), 100 nodes at the

first hidden layer, 50 nodes at the second hidden layer, and

14 nodes at the output layer (to resemble the size of our

vocabulary). For training, the network uses the sigmoid

function as the activation function and gradient descent

with weights initialized from sampling a normal

distribution with parameters dependent on the number of

hidden layers in the network. The network does not

currently have a regularization term.

 In desktop and laptop processors, floating-point

precision is rarely a concern. Because we plan to

implement this network in a low-cost FPGA, we are

limited by the amount of block memory and, hence, are

restricted in the amount of precision we can utilize. Our

nodes will be unsigned and encoded using 8 bits and our

weights will be signed and encoded using 3 to 5 bits. The

sigmoid function will also have to be approximated by

using a combinational approximation, which we will

discuss in greater detail in Section IV. Figure 1

demonstrates the tight fit that the combinational

approximation has with the standard sigmoid function.

Empirical tests show that the error induced by the

approximation is minimal: significantly less than 1%. Our

learning algorithm (i.e., gradient descent) is unaffected

since the training will be off-loaded to the Raspberry Pi 3.

Figure 1: Comparison between a sigmoid function with 16-

bit precision with its combinational approximation.

C. Classification

 With an understanding of the preprocessing steps and

the speech classifier, we can now take a bird’s eye view of

the classification process. In particular, we will split up

our discussion into a training phase and a testing phase,

according to where each phase is processed.

 During the training phase, we perform all of our

computations on the Raspberry Pi 3. We first preprocess

all of the raw signals in our dataset. This includes

trimming, framing, and computing the MFCC feature

vector for every signal. We then instantiate an instance of

the DNN to initialize the weights, set the learning rate, and

set the number of epochs to iterate through. Iterating

through the training set multiple time via epoch iteration is

useful for “generating” additional training data for the

network to learn from. Though this can cause the network

to overfit the training data, we have tested that 100 epochs

is generally sufficient to obtain the classification results we

want (greater than 80%) without overfitting.

 During the testing phase, we move our computations

over to the FPGA. First, we approximate the weights

generated on the Raspberry Pi 3 to values that fall within

the precision available with 3 to 5 bits. These weights are

then exported to a text file, converted to an appropriate

format for the FPGA to read, and then sent to the FPGA

via serial peripheral interface (SPI). At this point, the

system switches to testing mode. Any speech signals that

are recorded from the mic are converted to an appropriate

format for the FPGA on the Raspberry Pi 3 and then sent

over for processing. The FPGA will then communicate

back to the Raspberry Pi 3 with the classification results.

III. GRAPHICAL USER INTERFACE

 The graphical user interface is how the user can easily

interact with our system. Much of the functions that we

need for our speech recognition system involve different

programs that can be run on the command line. By using a

graphical user interface, we have a central application that

encompasses all the functionality of the desired programs.

 This application will allow for audio input and features

buttons that have various functionalities. These include

audio processing and training. Other widgets will be used

to output text and results to the user.

 Each of the functionalities on the graphical user

interface application demonstrate successful interfacing

with the algorithms and hardware. The user interface

allows the users to connect to the hardware via the SPI

bus. This in turn, allows data to be sent and received to the

raspberry pi.

 We chose to run the application on the raspberry pi with

a Debian Jesse operating system. This Linux based

operating system allows for development to be done

conveniently from a Linux Virtual Machine running

Ubuntu.

 The graphical user interface is developed using Qt

Creator and PyQt. This gave us access to libraries that

would assist in the design of our graphical user interface.

The advantage of using Python is that it allows us to easily

cross compile.

 Our vision for the system is to be able to record audio

data of the user speaking any of the integers from 0 – 9 or

cardinal directions, north south, east, or west. This will be

achieved through buttons on the user interface. The user

will press record to start recording and stop to end and

save the recording. In addition, the user interface also

allows for the opening of a WAV audio file. This file will

then still be able to undergo the same processing.

After pre-processing the data, the user can click on a

button that will trigger the deep learning algorithm to run

on the data on the FPGA chip. This feedback would then

be sent back over the SPI bus and communicated through a

display text box on the user interface. The FPGA will also

be able to physically indicate a successful connection

through the LEDs on the board.

IV. HARDWARE ARCHITECTURE

 The design of the FPGA-based artificial neural network

core is based on the work presented in [1C]. We expand

on the previous work by allowing the synthetization of

register-transfer level feed-forward neural networks of

arbitrary layer and node counts. These parameters can be

changed solely by modifying values in a global include

file, though they must be determined before compilation.

In addition to implementing arbitrarily sized networks,

latency and logic resource utilization can be controlled by

specifying how parallelized the forward-pass computation

needs to be. Table [1] below depicts the processing time in

a 516-100-50-14 feedforward network for various

parallelization configurations. Each tile has a loop value

associated with it that specifies how many nodes are

calculated per processing unit. As seen in Table [x], the

smaller the loop value, the shorter the processing time.

This decrease comes at the cost of resource utilization

(more processing units are needed).

Loop Parameters Latency

loop (1, 10, 10, 2) 645 us

loop (1, 5, 5, 2) 335.9 us

loop (1, 1, 1, 1) 83.7 us

Table 1: Latency for Various Design Configurations

Along the same line, weight storage can be split between

on-chip and off-chip RAM in any proportion to decrease

latency (more on-chip weights) or reduce on-chip memory

usage (more off-chip weights). Furthermore, we implement

a combinational approximation of the sigmoid activation

function with a higher precision than the function used in

[1C], allowing us to achieve a greater accuracy when

computing a forward pass through the network. Lastly, we

determine the precision and range of the network weights

that will best suit our needs, in addition to expanding the

storage location of these weights to include an external

SDRAM.

 A master control module wraps the ANN core and

allows for its use in a larger system by distributing weights

from the SDRAM to the appropriate tiles and

implementing an SPI interface to facilitate communication

with an external entity. In addition to these major

responsibilities, the control unit acts as a mediator between

an SPI master and the off-chip SDRAM, allowing the

forwarding of data from one to the other.

A. Processing Unit

 The ANN’s processing unit forms the design’s basic

execution unit. A processing unit is capable of taking an 8-

bit input value and a 3 to 5-bit weight, multiplying the two,

and adding the result to a sum stored in a register once

every clock cycle. It uses fixed-point arithmetic with 8

fractional bits to stay consistent with the output of

sig_368p.

 It is designed to have as small of a logic resource

utilization footprint as possible to allow for the inclusion

of a large number in a single design. To this end, it is

parameterized so that the RTL synthesis tool calculates

optimal internal register widths based on the size of the

neural network and the range of the discretized weights.

Furthermore, to avoid synthesizing multipliers,

multiplication is performed using shifts and additions,

which turn out to be less costly when compared with the

equivalent multiplier logic (compared using look-up-table

utilization metrics).

 A processing unit is used to calculate the output of the

ANN’s nodes. It can be reset to a default value, the node’s

bias value at any time, allowing it to be used to compute

the output of an indefinite number of nodes in the same

layer.

B. Combinational Approximation the Sigmoid Activation

Function

 Our network makes use of a sigmoid activation function

implemented using an AND-OR array, a characteristic

which lends itself well to reprogrammable logic devices

that have a plethora of LUTs. Originally, we used the

sig_337p module introduced in [2C] but found that,

especially in larger networks, it was leading to very

noticeable discrepancies between the FPGA’s forward-

pass outputs and the ideal outputs as computed by a

software model of the ANN. To remedy this, we designed

a higher precision approximation function following a

similar procedure to the one used in determining

sig_337p’s AND-OR array.

 We first mapped signed fixed-precision inputs (3 integer

bits, 6 fractional bits) to their corresponding sigmoid

function fixed-precision outputs (8 fractional bits) using a

C++ program [3C]. This created 8 truth tables with 512

entries. Each truth table was then passed as input to a

MATLAB implementation of the Quinne-McClusky logic

minimization algorithm [3C]. Following a lengthy

computation, the minimized Boolean equations mapping

all 512 possible fixed-point inputs to the 8 fractional

output bits were determined. A Verilog code generation

program written in C++ was then used to convert the

MATLAB output to usable HDL, thus creating the

sig_368p sigmoid approximation module [3C].

 Like sig_337p, sig_368p only takes positive input

values, therefore the 2’s complement of negative values

must be taken before being passed through the AND-OR

array. Additionally, the output value of the logic array

must be subtracted from 1 if the input value is negative.

 Performing a comparison using Altera’s Quartus

synthesis tool, sig_368p uses 115 LUTs whereas sig_337p

makes use of 19 LUTs. While this difference is significant,

it is an almost insignificant amount when compared to the

total number of LUT resources available on most FPGAs.

 Finally, we compared the forward-pass outputs of the

network using both sigmoid approximation modules. In a

dummy 516-100-50-14 network using randomly generated

weights and 100 instances of randomly generated input

data, sig_368p had an average discrepancy from the ideal

output layer values of 0.003. In the same scenario,

sig_337p had an average discrepancy of 0.05.

C. Tiles

 A tile in the hardware-based ANN core is composed of

several processing units, one sig_368p module, a block

RAM, and a basic control unit state machine. Moreover, a

tile is roughly equivalent to a neural network layer, the

only major difference being that a tile’s constituent

processing units can be used to calculate the output of

multiple nodes each.

 The block RAM in each tile contains the activated data

of the processing units in that tile. This block RAM also

feeds directly into the inputs of the following layer, thus

forming a buffer between layers of the network. Using this

buffer allows multiple tiles to be pipelined; a tile simply

has to write all of its outputs to the RAM before it can

begin accepting inputs from the preceding RAM, rather

than waiting for the following tile to complete processing.

 In an ideal situation, this pipelining can halve the

latency of a forward-pass through the network (latency is

equal to processing time of one tile rather than two). In

practice, however, since not all layers are the same size,

latency through the full network is equal to the processing

time of the largest tile in the ANN.

 A simple FSM instructs the processing units to add-

multiply, reset their registers, and transfer their data

through sig_368p to the block RAM. This FSM sits idle

unless there is input data available either from the input

layer of the ANN or the block RAM of the preceding tile.

D. Weights

 The characteristics of our network weights affect almost

every aspect of our design, including logic resource

utilization, memory usage, and latency. Early on we saw

that several people had experienced success using small,

low-precision weights. This influenced us to experiment

with weights of size 3 to 5 bits and in the range of [-3, 3]

as well as [-1.5, 1.5]. In all cases, we avoided instantiating

multipliers in the processing units and performed

multiplication using shifts and adds. For our purposes

(speech recognition), we saw that 5-bit weights in the

range of [-1.5, 1.5] gave the best classification accuracy as

most weights in the trained network fell in this range.

Table [2] below depicts logic resource utilization vs.

weight width on a Spartan-6 LX9 FPGA.

 Our overall system had an external SDRAM chip to

store and read weights from, so running out of overall

memory was a non-issue. However, running out of on-chip

memory was a serious issue that affected the processing

time of the ANN core, as its speed was bottlenecked by the

SDRAM’s read latency.

Table 2: Resource Utilization on the Spartan-6 FPGA with

increasing precision of the weights.

E. Master Control Unit

 The master control unit is not a part of the ANN core,

but rather exists to support the core and allow it to

interface with the rest of our speech recognition system. Its

main duties are distributing weights to the tile modules by

interfacing with the SDRAM memory controller and

allowing an external entity access to the ANN through a

serial peripheral interface. Additionally, it performs

miscellaneous functions like dealing with externally

generated reset conditions and controlling LEDs present

on our custom circuit board.

III. PHYSICAL HARDWARE

A. Raspberry Pi

 Since the processing of analog to digital for audio files

is such a large computation that requires large amounts of

processing power it was decided to use a Raspberry Pi 3.

The processor of the Raspberry Pi 3 utilizes a 1.2 GHz 64-

bit quad-core ARMv8 CPU which will be able to handle

the conversions in a timely manner. The Raspberry Pi 3

also handles the inputs from the GUI and processes

information depending on what the user requests via GUI

input options.

B. Application Board

 The application board contains various components of

the project all in one. It has a power section, the FPGA

deep learning computation section, and the applications

section. All of these different sections work together using

the digital audio from the Raspberry Pi 3 to identify the

word spoken using the FPGA's programming and output

the response using the LED application section.

 The main components that are involved in this board are

the power components, the FPGA, SDRAM, LEDS and

connectors. The flow of data is from the Raspberry Pi 3 to

the FPGA, back and forth from the SDRAM to FPGA and

then finally from the FPGA to a particular LED. There are

14 LEDS, an SDRAM, Raspberry Pi 3 SPI pins and power

connected to the FPGA.

 For the power components, a barrel jack connector was

chosen for the board to supply power. The wall outlet

power supply of 5V was chosen to supply power to the

board through the barrel connector. To get the two desired

voltage levels for this board two voltage regulators were

chosen. The two regulators would regulate the voltage

from 5V to 3.3V and then to 1.2V as well. To keep the

voltage steady and make up for any drops in voltage levels

or noise decoupling capacitors were placed on the input

and output voltages for each voltage regulator. This

reduced the effect the change in voltage would have on the

rest of the digital circuit. For our applications this is very

important because the FPGA and SDRAM are dealing

with very precise digital signals and steady voltages are

pertinent.

The Xilinx Inc. XC6SLX9-3TQG144C FPGA was chosen

based mostly on cost and assembly constraints. It has 144

pins in a quad-flat package with 102 IO pins which is great

for connecting all of the components we need. With this

FPGA at less than 20 dollars with meant IO pins and logic

elements, it will be great for the application of the project.

There is a 3.3V main power supply to the FPGA and also a

second voltage level 1.2V.

The SDRAM is another important element to the

application board design. For the design the IC SDRAM

256MBIT 143MHZ 54TSOP was chosen. This component

stores information for the deep learning computations. It is

needed because the FPGA can only store so many

calculation values, with the SDRAM's help many more

calculations can be saved for future calculations. All of the

calculations will be explained further in other sections.

The SDRAM we chose is also very cost effective and can

store 256MB of data.

The LEDS chosen are 1206 SMD green LEDs with a

voltage drop of 2V across them. They are connected to the

FPGA with current limiting resistor banks in between

them. These current limiting resistors are important in

pulling the current down to a desired level according to

KCL and KVL since the LED requires 20mA and 2V to

turn on. These LEDs are labeled 0-9 and North, South,

East and West. Once the FPGA has computed which word

was said by the user it will output one result and light up

the corresponding LED.

II. APPLICATION

The graphical user interface is how the user can easily

interact with our system. Much of the functions that we

need for our speech recognition system involve different

programs that can be run on the command line. By using a

graphical user interface, we have a central application that

encompasses all the functionality of the desired programs.

This application will allow for audio input and features

buttons that have various functionalities. These include

audio processing and training. Other widgets will be used

to output text and results to the user.

Each of the functionalities on the graphical user

interface application demonstrate successful interfacing

with the algorithms and hardware. The user interface

allows the users to connect to the hardware via the SPI

bus. This in turn, allows data to be sent and received to the

raspberry pi.

We chose to run the application on the raspberry pi with

a Debian Jesse operating system. This Linux based

operating system allows for development to be done

conveniently from a Linux Virtual Machine running

Ubuntu.

The graphical user interface is developed using Qt

Creator and PyQt. This gave us access to libraries that

would assist in the design of our graphical user interface.

The advantage of using Python is that it allows us to easily

cross compile.

Our vision for the system is to be able to record audio

data of the user speaking any of the integers from 0 – 9 or

cardinal directions, north south, east, or west. This will be

achieved through buttons on the user interface. The user

will press record to start recording and stop to end and

save the recording. In addition, the user interface also

allows for the opening of a WAV audio file. This file will

then still be able to undergo the same processing.

After pre-processing the data, the user can click on a

button that will trigger the deep learning algorithm to run

on the data on the FPGA chip. This feedback would then

be sent back over the SPI bus and communicated through a

display text box on the user interface. The FPGA will also

be able to physically indicate a successful connection

through the LEDs on the board.

V. CONCLUSION

 Our project DeepGate was inspired by the capabilities

and research possibilities of neural networks and FPGAs.

Through research, design, development, and testing, the

team was able to create a prototype for a speech

recognition application that combines cutting-edge

technologies.

 This was accomplished in part by leveraging team

member’s experience and interests in FPGA and neural

network research. Our goals were determined with the

consideration of budget, time, and skill limitations.

Overall, DeepGate achieved its objective as a usable

prototype and a valuable learning experience for

professional engineering work in both research and

industry.

ACKNOWLEDGEMENT

 The authors wish to acknowledge the assistance and

support of our review committee. Their time, mentorship,

as well as consideration is greatly appreciated. We would

also like to thank our advisors, Michael F. Young, an

adjunct professor at UCF and entrepreneur, and Dr. Lei

Wei for their advice and encouragement throughout the

development process. Thanks so much to our sponsor

SoarTech for their funding, support, and advice.

REFERENCES

[1C] Park, J, & Sung, W. (2016). FPGA based implementation of
deep neural networks using on-chip memory only. 2016

[2C] Tommiska, M. (2003). Efficient digital implementation of
the sigmoid function for reprogrammable logic. IEE
Proceedings - Computers and Digital Techniques, 150(6),
403. doi:10.1049/ip-cdt:20030965

[3C] Orban, Cedric. "Orbancedric/DeepGate." GitHub. N.p., n.d.
Web. 06 Apr. 2017.

BIOGRAPHY

 Lindsay Davis will be graduating from the University of

Central Florida with a Bachelor’s of Science in Electrical

Engineering and a minor in Film. During her time at UCF,

Lindsay held an intern position with Northrop Grumman

focusing on ultrasonic sensors. She also led a robotics

team for the 2016 NASA Student Launch Competition.

 Estella Gong will be graduating from the University of

Central Florida with a Bachelor’s of Science in Computer

Engineering. During her time at UCF, Estella interned with

Lockheed Martin, SAIC, and State Farm for systems

engineering, IT, and tech innovation research positions,

respectively. After graduation, Estella will be entering

Texas Instruments’ Technical Sales Engineering and

Product Marketing Engineering Rotation Program.

 Michael Lopez-Brau will be graduating from the

University of Central Florida with a Bachelor’s of Science

in Electrical Engineering with minors in Computer Science

and Mathematics. During his time at UCF, Michael

worked as a research assistant in biology, computer

science, engineering, and psychology. After graduation,

Michael will enroll in a PhD program in Psychology to

bridge the gap between artificial and natural intelligence.

Cedric Orban will be graduating from the University of

Central Florida with a Bachelor’s of Science in Electrical

Engineering. During his time at UCF, Cedric worked with

FPGAs. After graduation, Cedric will be entering Stanford

University’s Electrical Engineering Master’s Program.

