DeepGate: Hardware-
Accelerated Speech Recognition
System

Lindsay Davis, Estella Gong, Michael Lopez-
Brau, and Cedric Orban

Department of Electrical and Computer
Engineering, University of Central Florida,
Orlando, Florida, 32816-2450

Abstract — This paper presents the design and
implementation of DeepGate, a feedforward, deep neural
network (DNN) on a low-cost field-programmable gate array
(FPGA) for speech classification of a small vocabulary. We
discuss our algorithmic approach as well as the limitations
that are incurred from using a low-cost FPGA. These
limitations are fleshed out in greater detail by an analysis of
the firmware programming on the FPGA. Furthermore, we
discuss the classifier as a hardware-accelerated DNN, jointly
powered by the FPGA and off-board processor. Lastly, we
review the printed circuit board (PCB) that we developed to
house the FPGA.

Index Terms — FPGA, hardware acceleration, neural
network, speech recognition.

1. INTRODUCTION

People have the remarkable ability to make vast
inferences about the world with little information. A prime
example of this is language: how are humans able to
effectively use language, an unfathomably flexible and
vague form of communication, to develop and exchange
ideas? Is it possible to train machines to communicate or at
least understand the vagueness of natural language? These
questions and many like them have piqued the interest of
many linguists, computer scientists, and engineers, leading
to research thrusts in computational linguistics and natural
language processing.

At the intersection of these two fields, numerous
algorithms and heuristics have been developed in the
search to find the one most optimal for practical speech
recognition. Recent advances in hardware have caused a
resurgence in the development of deep neural network
(DNN) modeling, now commonly known as deep learning.
In the past, neural network models with many hidden
layers were unfeasible due to their computational
complexity and their need for data. Today, many of the

most common deep learning algorithms can be run on a
middle-to-high end laptop. These algorithms have become
very popular as of late due to their ability to dominate
other machine learning algorithms on almost every
benchmark. We have noticed that these algorithms also
perform exceptionally well in the language domain,
particularly in speech recognition.

We designed a system that mirrors current research
thrusts by implementing this algorithm on a low-cost
FPGA. FPGAs have the advantage of being significantly
cheaper than ASIC variants for small-scale applications.
They also have the ability to run a DNN faster than a CPU
and with less power consumption than a GPU.

In Section 11, we will begin by discussing the design of
the speech classifier, including the dataset we used, data
preprocessing, and the parameterization of the DNN. In
Section I11, we review the graphical user interface (GUI)
that the users will use to interact with the system. In
Section IV, we move forward to discussing the
implementation of the DNN on the FPGA and the steps we
took to address our algorithmic constraints. Lastly, Section
V discusses the hardware design and we wrap up with a
conclusion in Section V1.

II. SYSTEM OVERVIEW

The DeepGate Speech Recognition system is the
combination of the implementation of a deep learning
approach on the FPGA chips. The goal of DeepGate is to
create an affordable, energy-efficient, low-cost, compact
speech recognition system that utilizes current research.
Input consists of audio data which will be received through
a user interface. This allows for the user to easily interact
with the system. This FPGA implementation of a neural
network will contain a small vocabulary of pre-registered
words that the user will be able get started with.

DeepGate consists of several parts: data acquisition,
data pre-processing, recognition/decoding, and an
application interface. This in turn makes up our Hardware
and Software Architecture. The high level diagram is
depicted as Figure 1.

A. Data Acquisition Stage

The data acquisition is the audio recording of voice files
through a microphone. These will be sampled at a rate of
16,000 Hz and saved in the WAYV file format. These audio
files will allow us to get the user get started with the pre-
registered vocabulary with includes integers from 0 to 9,
as well as the cardinal directions, north, south, east, and
west.

B. Data Pre-Processing Stage

The data pre-processing is accomplished through an
algorithm that will be run on our processor, in this case a
raspberry pi. This includes some filtering as well as
possible digital signal processing. With this stage, the data
is prepared for its utility in the speech recognition.

C. Recognition-Decoding Stage

The recognition/decoding stage is the implementation of
the deep neural network model on the FPGA chip. We also
have a PCB chip that is designed for the FPGA as well as
the additional peripherals we have. This stage will run
through the algorithms and identify perceived matches
within the vocabulary set.

C. Application Stage

Finally, we have an application that user can interact
with to perform the speech recognition. This will be the
graphical user interface that runs from the raspberry pi. Tis
application allows the user to run training algorithms on
recorded audio data. Output with regards to the speech
recognition will be displayed to the user via the graphical
user interface. In addition, the FPGA LEDs will also
provide user feedback.

Audio Input
Data Pre-] User |r.1ter.face
Processing Application

Recognition/
Decoding Stage

Figure 1: High — Level System Overview

II. SPEECH RECOGNITION

Our speech recognition system involves a pipeline that
begins with a preprocessing stage, a training stage, and a
testing stage. The preprocessing stage and training stages
will be performed on a Raspberry Pi 3. The results from
these stages will be sent to the FPGA, where the testing
stage will then be conducted. This pipeline will be
discussed in greater detail later.

A. Preprocessing

The preprocessing stage is essential in order to get our
inputs in the ideal format for our classifier. Just as the
semantics of natural language can be finicky, so can
comparing speech signals: even from the same individual.
Speech signals will be initially sampled via a microphone
at 16,000 Hz and stored in a WAV file. We chose our
sampling rate based on the fact that 16,000 Hz captures all
of the details we might want about a particular utterance,
while avoiding the extra computations that would come
with oversampling (i.e., having more samples per signal).
The WAV format was a natural choice for us as it is an
uncompressed file format for audio signals.

Our dataset currently consists of six people’s speech
sets. Each speech set contain five more subsets, where the
each subset represents that individual saying every word in
our vocabulary once. The data is collected using the
sampling rate and file format mentioned above. We are
always expanding the dataset to increase the
generalizability of our classifier.

To account for any noise that occurs during
initialization, we scan through the speech signal and look
for the first sample that is greater than or equal to
approximately 40% of the maximum value of the absolute
value of the signal. We set this point as the starting point
and take the next 6999 samples per signal. This heuristic is
necessary in order to achieve a simple, automatic
preprocessing routine that can grant us good classification
results during testing.

Once we have trimmed our raw signals to 7000 samples,
we partition each signal into a collection of frames and
compute the Mel-frequency cepstrum coefficients (MFCC)
for each frame. MFCCs are features widely used in speech
recognition. They are extracted from audio signals, with
the goal of mimicking certain parts of human speech
perception. In particular, MFCC features mimic the
logarithmic perception of loudness and pitch of human
auditory systems through the use of the Mel scale, which
relates a perceived frequency with its actual frequency.

For compatibility with our classifier, we scaled the
MFCCs so that they fit between -1 and 1, divided by 2,
and then shifted by half so that our feature vector lies
between 0 and 1. This reduces the chances of the DNN
having saturated inputs into any of the hidden or output
nodes, which are detrimental for learning.

B. Speech Classifier

As mentioned previously, our speech classifier is a
feedforward DNN tasked with classifying a vocabulary of
14 words. The vocabulary consists of the numbers 0-9 and
the cardinal directions: east, north, south, and west. There
are several other powerful choices that are often employed
in speech recognition systems, such as hidden Markov

models (HMM) and recurrent neural networks (RNN).
These algorithms tend to be quite sophisticated in terms of
implementation and require computational resources that
we do not have with our hardware. Consequently, we
chose to go with a feedforward DNN for our application.

The network has 516 nodes at the input layer (to
resemble the size of our feature vector), 100 nodes at the
first hidden layer, 50 nodes at the second hidden layer, and
14 nodes at the output layer (to resemble the size of our
vocabulary). For training, the network uses the sigmoid
function as the activation function and gradient descent
with weights initialized from sampling a normal
distribution with parameters dependent on the number of
hidden layers in the network. The network does not
currently have a regularization term.

In desktop and laptop processors, floating-point
precision is rarely a concern. Because we plan to
implement this network in a low-cost FPGA, we are
limited by the amount of block memory and, hence, are
restricted in the amount of precision we can utilize. Our
nodes will be unsigned and encoded using 8 bits and our
weights will be signed and encoded using 3 to 5 bits. The
sigmoid function will also have to be approximated by
using a combinational approximation, which we will
discuss in greater detail in Section IV. Figure 1
demonstrates the tight fit that the combinational
approximation has with the standard sigmoid function.
Empirical tests show that the error induced by the
approximation is minimal: significantly less than 1%. Our
learning algorithm (i.e., gradient descent) is unaffected
since the training will be off-loaded to the Raspberry Pi 3.

10 _y= 5|gmo|d(x)

0.8 |

0.6

0.4

0.2

— standard
— combinational

-6 -4 -2 0 2 4 6

Figure 1: Comparison between a sigmoid function with 16-
bit precision with its combinational approximation.

C. Classification

With an understanding of the preprocessing steps and
the speech classifier, we can now take a bird’s eye view of
the classification process. In particular, we will split up
our discussion into a training phase and a testing phase,
according to where each phase is processed.

During the training phase, we perform all of our
computations on the Raspberry Pi 3. We first preprocess
all of the raw signals in our dataset. This includes
trimming, framing, and computing the MFCC feature
vector for every signal. We then instantiate an instance of
the DNN to initialize the weights, set the learning rate, and
set the number of epochs to iterate through. Iterating
through the training set multiple time via epoch iteration is
useful for “generating” additional training data for the
network to learn from. Though this can cause the network
to overfit the training data, we have tested that 100 epochs
is generally sufficient to obtain the classification results we
want (greater than 80%) without overfitting.

During the testing phase, we move our computations
over to the FPGA. First, we approximate the weights
generated on the Raspberry Pi 3 to values that fall within
the precision available with 3 to 5 bits. These weights are
then exported to a text file, converted to an appropriate
format for the FPGA to read, and then sent to the FPGA
via serial peripheral interface (SPI). At this point, the
system switches to testing mode. Any speech signals that
are recorded from the mic are converted to an appropriate
format for the FPGA on the Raspberry Pi 3 and then sent
over for processing. The FPGA will then communicate
back to the Raspberry Pi 3 with the classification results.

IIT. GRAPHICAL USER INTERFACE

The graphical user interface is how the user can easily
interact with our system. Much of the functions that we
need for our speech recognition system involve different
programs that can be run on the command line. By using a
graphical user interface, we have a central application that
encompasses all the functionality of the desired programs.

This application will allow for audio input and features
buttons that have various functionalities. These include
audio processing and training. Other widgets will be used
to output text and results to the user.

Each of the functionalities on the graphical user
interface application demonstrate successful interfacing
with the algorithms and hardware. The user interface
allows the users to connect to the hardware via the SPI
bus. This in turn, allows data to be sent and received to the
raspberry pi.

We chose to run the application on the raspberry pi with
a Debian Jesse operating system. This Linux based
operating system allows for development to be done

conveniently from a Linux Virtual Machine running
Ubuntu.

The graphical user interface is developed using Qt
Creator and PyQt. This gave us access to libraries that
would assist in the design of our graphical user interface.
The advantage of using Python is that it allows us to easily
cross compile.

Our vision for the system is to be able to record audio

data of the user speaking any of the integers from 0 — 9 or
cardinal directions, north south, east, or west. This will be
achieved through buttons on the user interface. The user
will press record to start recording and stop to end and
save the recording. In addition, the user interface also
allows for the opening of a WAV audio file. This file will
then still be able to undergo the same processing.
After pre-processing the data, the user can click on a
button that will trigger the deep learning algorithm to run
on the data on the FPGA chip. This feedback would then
be sent back over the SPI bus and communicated through a
display text box on the user interface. The FPGA will also
be able to physically indicate a successful connection
through the LEDs on the board.

IV. HARDWARE ARCHITECTURE

The design of the FPGA-based artificial neural network
core is based on the work presented in [1C]. We expand
on the previous work by allowing the synthetization of
register-transfer level feed-forward neural networks of
arbitrary layer and node counts. These parameters can be
changed solely by modifying values in a global include
file, though they must be determined before compilation.
In addition to implementing arbitrarily sized networks,
latency and logic resource utilization can be controlled by
specifying how parallelized the forward-pass computation
needs to be. Table [1] below depicts the processing time in
a b516-100-50-14 feedforward network for various
parallelization configurations. Each tile has a loop value
associated with it that specifies how many nodes are
calculated per processing unit. As seen in Table [x], the
smaller the loop value, the shorter the processing time.
This decrease comes at the cost of resource utilization
(more processing units are needed).

Loop Parameters Latency
loop (1, 10, 10, 2) 645 us
loop (1, 5,5, 2) 335.9 us
loop (1,1,1,1) 83.7 us

Table 1: Latency for Various Design Configurations

Along the same line, weight storage can be split between
on-chip and off-chip RAM in any proportion to decrease
latency (more on-chip weights) or reduce on-chip memory
usage (more off-chip weights). Furthermore, we implement
a combinational approximation of the sigmoid activation
function with a higher precision than the function used in
[1C], allowing us to achieve a greater accuracy when
computing a forward pass through the network. Lastly, we
determine the precision and range of the network weights
that will best suit our needs, in addition to expanding the
storage location of these weights to include an external
SDRAM.

A master control module wraps the ANN core and
allows for its use in a larger system by distributing weights
from the SDRAM to the appropriate tiles and
implementing an SPI interface to facilitate communication
with an external entity. In addition to these major
responsibilities, the control unit acts as a mediator between
an SPI master and the off-chip SDRAM, allowing the
forwarding of data from one to the other.

A. Processing Unit

The ANN’s processing unit forms the design’s basic
execution unit. A processing unit is capable of taking an 8-
bit input value and a 3 to 5-bit weight, multiplying the two,
and adding the result to a sum stored in a register once
every clock cycle. It uses fixed-point arithmetic with 8
fractional bits to stay consistent with the output of
sig_368p.

It is designed to have as small of a logic resource
utilization footprint as possible to allow for the inclusion
of a large number in a single design. To this end, it is
parameterized so that the RTL synthesis tool calculates
optimal internal register widths based on the size of the
neural network and the range of the discretized weights.
Furthermore, to avoid synthesizing multipliers,
multiplication is performed using shifts and additions,
which turn out to be less costly when compared with the
equivalent multiplier logic (compared using look-up-table
utilization metrics).

A processing unit is used to calculate the output of the
ANN’s nodes. It can be reset to a default value, the node’s
bias value at any time, allowing it to be used to compute
the output of an indefinite number of nodes in the same
layer.

B. Combinational Approximation the Sigmoid Activation
Function

Our network makes use of a sigmoid activation function
implemented using an AND-OR array, a characteristic
which lends itself well to reprogrammable logic devices
that have a plethora of LUTs. Originally, we used the
sig_337p module introduced in [2C] but found that,
especially in larger networks, it was leading to very
noticeable discrepancies between the FPGA’s forward-
pass outputs and the ideal outputs as computed by a
software model of the ANN. To remedy this, we designed
a higher precision approximation function following a
similar procedure to the one used in determining
sig_337p’s AND-OR array.

We first mapped signed fixed-precision inputs (3 integer
bits, 6 fractional bits) to their corresponding sigmoid
function fixed-precision outputs (8 fractional bits) using a
C++ program [3C]. This created 8 truth tables with 512
entries. Each truth table was then passed as input to a
MATLAB implementation of the Quinne-McClusky logic
minimization algorithm [3C]. Following a lengthy
computation, the minimized Boolean equations mapping
all 512 possible fixed-point inputs to the 8 fractional
output bits were determined. A Verilog code generation
program written in C++ was then used to convert the
MATLAB output to usable HDL, thus creating the
sig_368p sigmoid approximation module [3C].

Like sig_337p, sig_368p only takes positive input
values, therefore the 2’s complement of negative values
must be taken before being passed through the AND-OR
array. Additionally, the output value of the logic array
must be subtracted from 1 if the input value is negative.

Performing a comparison using Altera’s Quartus
synthesis tool, sig_368p uses 115 LUTs whereas sig_337p
makes use of 19 LUTs. While this difference is significant,
it is an almost insignificant amount when compared to the
total number of LUT resources available on most FPGAs.

Finally, we compared the forward-pass outputs of the
network using both sigmoid approximation modules. In a
dummy 516-100-50-14 network using randomly generated
weights and 100 instances of randomly generated input
data, sig_368p had an average discrepancy from the ideal
output layer values of 0.003. In the same scenario,
sig_337p had an average discrepancy of 0.05.

C. Tiles

A tile in the hardware-based ANN core is composed of
several processing units, one sig_368p module, a block
RAM, and a basic control unit state machine. Moreover, a
tile is roughly equivalent to a neural network layer, the
only major difference being that a tile’s constituent
processing units can be used to calculate the output of
multiple nodes each.

The block RAM in each tile contains the activated data
of the processing units in that tile. This block RAM also
feeds directly into the inputs of the following layer, thus
forming a buffer between layers of the network. Using this
buffer allows multiple tiles to be pipelined; a tile simply
has to write all of its outputs to the RAM before it can
begin accepting inputs from the preceding RAM, rather
than waiting for the following tile to complete processing.

In an ideal situation, this pipelining can halve the
latency of a forward-pass through the network (latency is
equal to processing time of one tile rather than two). In
practice, however, since not all layers are the same size,
latency through the full network is equal to the processing
time of the largest tile in the ANN.

A simple FSM instructs the processing units to add-
multiply, reset their registers, and transfer their data
through sig_368p to the block RAM. This FSM sits idle
unless there is input data available either from the input
layer of the ANN or the block RAM of the preceding tile.

D. Weights

The characteristics of our network weights affect almost
every aspect of our design, including logic resource
utilization, memory usage, and latency. Early on we saw
that several people had experienced success using small,
low-precision weights. This influenced us to experiment
with weights of size 3 to 5 bits and in the range of [-3, 3]
as well as [-1.5, 1.5]. In all cases, we avoided instantiating
multipliers in the processing units and performed
multiplication using shifts and adds. For our purposes
(speech recognition), we saw that 5-bit weights in the
range of [-1.5, 1.5] gave the best classification accuracy as
most weights in the trained network fell in this range.
Table [2] below depicts logic resource utilization vs.
weight width on a Spartan-6 LX9 FPGA.

Our overall system had an external SDRAM chip to
store and read weights from, so running out of overall
memory was a non-issue. However, running out of on-chip
memory was a serious issue that affected the processing
time of the ANN core, as its speed was bottlenecked by the
SDRAM’s read latency.

Spartan-6 Resource Utilization vs. Weight Width

o —— |
—— |
0 s—
———
0 1000 2000 3000 4000 5000 6000

Slice Registers @ Slice LUTs

Table 2: Resource Utilization on the Spartan-6 FPGA with
increasing precision of the weights.

E. Master Control Unit

The master control unit is not a part of the ANN core,
but rather exists to support the core and allow it to
interface with the rest of our speech recognition system. Its
main duties are distributing weights to the tile modules by
interfacing with the SDRAM memory controller and
allowing an external entity access to the ANN through a
serial peripheral interface. Additionally, it performs
miscellaneous functions like dealing with externally
generated reset conditions and controlling LEDs present
on our custom circuit board.

III. PHYSICAL HARDWARE

A. Raspberry Pi

Since the processing of analog to digital for audio files
is such a large computation that requires large amounts of
processing power it was decided to use a Raspberry Pi 3.
The processor of the Raspberry Pi 3 utilizes a 1.2 GHz 64-
bit quad-core ARMv8 CPU which will be able to handle
the conversions in a timely manner. The Raspberry Pi 3
also handles the inputs from the GUI and processes
information depending on what the user requests via GUI
input options.

B. Application Board

The application board contains various components of
the project all in one. It has a power section, the FPGA
deep learning computation section, and the applications
section. All of these different sections work together using
the digital audio from the Raspberry Pi 3 to identify the

word spoken using the FPGA's programming and output
the response using the LED application section.

The main components that are involved in this board are
the power components, the FPGA, SDRAM, LEDS and
connectors. The flow of data is from the Raspberry Pi 3 to
the FPGA, back and forth from the SDRAM to FPGA and
then finally from the FPGA to a particular LED. There are
14 LEDS, an SDRAM, Raspberry Pi 3 SPI pins and power
connected to the FPGA.

For the power components, a barrel jack connector was
chosen for the board to supply power. The wall outlet
power supply of 5V was chosen to supply power to the
board through the barrel connector. To get the two desired
voltage levels for this board two voltage regulators were
chosen. The two regulators would regulate the voltage
from 5V to 3.3V and then to 1.2V as well. To keep the
voltage steady and make up for any drops in voltage levels
or noise decoupling capacitors were placed on the input
and output voltages for each voltage regulator. This
reduced the effect the change in voltage would have on the
rest of the digital circuit. For our applications this is very
important because the FPGA and SDRAM are dealing
with very precise digital signals and steady voltages are
pertinent.

The Xilinx Inc. XC6SLX9-3TQG144C FPGA was chosen
based mostly on cost and assembly constraints. It has 144
pins in a quad-flat package with 102 10 pins which is great
for connecting all of the components we need. With this
FPGA at less than 20 dollars with meant 10 pins and logic
elements, it will be great for the application of the project.
There is a 3.3V main power supply to the FPGA and also a
second voltage level 1.2V.

The SDRAM is another important element to the
application board design. For the design the IC SDRAM
256MBIT 143MHZ 54TSOP was chosen. This component
stores information for the deep learning computations. It is
needed because the FPGA can only store so many
calculation values, with the SDRAM's help many more
calculations can be saved for future calculations. All of the
calculations will be explained further in other sections.
The SDRAM we chose is also very cost effective and can
store 256MB of data.

The LEDS chosen are 1206 SMD green LEDs with a
voltage drop of 2V across them. They are connected to the
FPGA with current limiting resistor banks in between
them. These current limiting resistors are important in
pulling the current down to a desired level according to
KCL and KVL since the LED requires 20mA and 2V to
turn on. These LEDs are labeled 0-9 and North, South,
East and West. Once the FPGA has computed which word

was said by the user it will output one result and light up
the corresponding LED.

II. APPLICATION

The graphical user interface is how the user can easily
interact with our system. Much of the functions that we
need for our speech recognition system involve different
programs that can be run on the command line. By using a
graphical user interface, we have a central application that
encompasses all the functionality of the desired programs.

This application will allow for audio input and features
buttons that have various functionalities. These include
audio processing and training. Other widgets will be used
to output text and results to the user.

Each of the functionalities on the graphical user
interface application demonstrate successful interfacing
with the algorithms and hardware. The user interface
allows the users to connect to the hardware via the SPI
bus. This in turn, allows data to be sent and received to the

raspberry pi.

We chose to run the application on the raspberry pi with
a Debian Jesse operating system. This Linux based
operating system allows for development to be done
conveniently from a Linux Virtual Machine running
Ubuntu.

The graphical user interface is developed using Qt
Creator and PyQt. This gave us access to libraries that
would assist in the design of our graphical user interface.
The advantage of using Python is that it allows us to easily
cross compile.

Our vision for the system is to be able to record audio
data of the user speaking any of the integers from 0 — 9 or
cardinal directions, north south, east, or west. This will be
achieved through buttons on the user interface. The user
will press record to start recording and stop to end and
save the recording. In addition, the user interface also
allows for the opening of a WAV audio file. This file will
then still be able to undergo the same processing.

After pre-processing the data, the user can click on a
button that will trigger the deep learning algorithm to run
on the data on the FPGA chip. This feedback would then
be sent back over the SPI bus and communicated through a
display text box on the user interface. The FPGA will also
be able to physically indicate a successful connection
through the LEDs on the board.

V. CONCLUSION

Our project DeepGate was inspired by the capabilities
and research possibilities of neural networks and FPGAs.
Through research, design, development, and testing, the
team was able to create a prototype for a speech
recognition application that combines cutting-edge
technologies.

This was accomplished in part by leveraging team
member’s experience and interests in FPGA and neural
network research. Our goals were determined with the
consideration of budget, time, and skill limitations.
Overall, DeepGate achieved its objective as a usable
prototype and a valuable learning experience for
professional engineering work in both research and
industry.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of our review committee. Their time, mentorship,
as well as consideration is greatly appreciated. We would
also like to thank our advisors, Michael F. Young, an
adjunct professor at UCF and entrepreneur, and Dr. Lei
Wei for their advice and encouragement throughout the
development process. Thanks so much to our sponsor
SoarTech for their funding, support, and advice.

REFERENCES

[1C]Park, J, & Sung, W. (2016). FPGA based implementation of
deep neural networks using on-chip memory only. 2016
[2C] Tommiska, M. (2003). Efficient digital implementation of
the sigmoid function for reprogrammable logic. IEE
Proceedings - Computers and Digital Techniques, 150(6),
403. doi:10.1049/ip-cdt:20030965

[3C] Orban, Cedric. "Orbancedric/DeepGate.” GitHub. N.p., n.d.
Web. 06 Apr. 2017.

BIOGRAPHY

Lindsay Davis will be graduating from the University of
Central Florida with a Bachelor’s of Science in Electrical
Engineering and a minor in Film. During her time at UCF,
Lindsay held an intern position with Northrop Grumman
focusing on ultrasonic sensors. She also led a robotics
team for the 2016 NASA Student Launch Competition.

Estella Gong will be graduating from the University of
Central Florida with a Bachelor’s of Science in Computer
Engineering. During her time at UCF, Estella interned with
Lockheed Martin, SAIC, and State Farm for systems

engineering, IT, and tech innovation research positions,
respectively. After graduation, Estella will be entering
Texas Instruments’ Technical Sales Engineering and
Product Marketing Engineering Rotation Program.

Michael Lopez-Brau will be graduating from the
University of Central Florida with a Bachelor’s of Science
in Electrical Engineering with minors in Computer Science
and Mathematics. During his time at UCF, Michael
worked as a research assistant in biology, computer
science, engineering, and psychology. After graduation,
Michael will enroll in a PhD program in Psychology to
bridge the gap between artificial and natural intelligence.

Cedric Orban will be graduating from the University of
Central Florida with a Bachelor’s of Science in Electrical
Engineering. During his time at UCF, Cedric worked with
FPGAs. After graduation, Cedric will be entering Stanford
University’s Electrical Engineering Master’s Program.

