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Abstract — This paper presents the design and 
implementation of DeepGate, a feedforward, deep neural 
network (DNN) on a low-cost field-programmable gate array 
(FPGA) for speech classification of a small vocabulary. We 
discuss our algorithmic approach as well as the limitations 
that are incurred from using a low-cost FPGA. These 
limitations are fleshed out in greater detail by an analysis of 
the firmware programming on the FPGA. Furthermore, we 
discuss the classifier as a hardware-accelerated DNN, jointly 
powered by the FPGA and off-board processor. Lastly, we 
review the printed circuit board (PCB) that we developed to 
house the FPGA. 

Index Terms — FPGA, hardware acceleration, neural 
network, speech recognition. 

 

 

I. INTRODUCTION 

    People have the remarkable ability to make vast 

inferences about the world with little information. A prime 

example of this is language: how are humans able to 

effectively use language, an unfathomably flexible and 

vague form of communication, to develop and exchange 

ideas? Is it possible to train machines to communicate or at 

least understand the vagueness of natural language? These 

questions and many like them have piqued the interest of 

many linguists, computer scientists, and engineers, leading 

to research thrusts in computational linguistics and natural 

language processing. 

    At the intersection of these two fields, numerous 

algorithms and heuristics have been developed in the 

search to find the one most optimal for practical speech 

recognition. Recent advances in hardware have caused a 

resurgence in the development of deep neural network 

(DNN) modeling, now commonly known as deep learning. 

In the past, neural network models with many hidden 

layers were unfeasible due to their computational 

complexity and their need for data. Today, many of the 

most common deep learning algorithms can be run on a 

middle-to-high end laptop. These algorithms have become 

very popular as of late due to their ability to dominate 

other machine learning algorithms on almost every 

benchmark. We have noticed that these algorithms also 

perform exceptionally well in the language domain, 

particularly in speech recognition. 

    We designed a system that mirrors current research 

thrusts by implementing this algorithm on a low-cost 

FPGA. FPGAs have the advantage of being significantly 

cheaper than ASIC variants for small-scale applications. 

They also have the ability to run a DNN faster than a CPU 

and with less power consumption than a GPU. 

    In Section II, we will begin by discussing the design of 

the speech classifier, including the dataset we used, data 

preprocessing, and the parameterization of the DNN. In 

Section III, we review the graphical user interface (GUI) 

that the users will use to interact with the system. In 

Section IV, we move forward to discussing the 

implementation of the DNN on the FPGA and the steps we 

took to address our algorithmic constraints. Lastly, Section 

V discusses the hardware design and we wrap up with a 

conclusion in Section VI. 

 

II. SYSTEM OVERVIEW 

The DeepGate Speech Recognition system is the 

combination of the implementation of a deep learning 

approach on the FPGA chips. The goal of DeepGate is to 

create an affordable, energy-efficient, low-cost, compact 

speech recognition system that utilizes current research. 

Input consists of audio data which will be received through 

a user interface. This allows for the user to easily interact 

with the system. This FPGA implementation of a neural 

network will contain a small vocabulary of pre-registered 

words that the user will be able get started with.  

DeepGate consists of several parts: data acquisition, 

data pre-processing, recognition/decoding, and an 

application interface. This in turn makes up our Hardware 

and Software Architecture. The high level diagram is 

depicted as Figure 1. 

A. Data Acquisition Stage 

The data acquisition is the audio recording of voice files 

through a microphone. These will be sampled at a rate of 

16,000 Hz and saved in the WAV file format. These audio 

files will allow us to get the user get started with the pre-

registered vocabulary with includes integers from 0 to 9, 

as well as the cardinal directions, north, south, east, and 

west. 

B. Data Pre-Processing Stage 



The data pre-processing is accomplished through an 

algorithm that will be run on our processor, in this case a 

raspberry pi. This includes some filtering as well as 

possible digital signal processing. With this stage, the data 

is prepared for its utility in the speech recognition. 

C. Recognition-Decoding Stage 

The recognition/decoding stage is the implementation of 

the deep neural network model on the FPGA chip. We also 

have a PCB chip that is designed for the FPGA as well as 

the additional peripherals we have. This stage will run 

through the algorithms and identify perceived matches 

within the vocabulary set. 

C. Application Stage 

     Finally, we have an application that user can interact 

with to perform the speech recognition. This will be the 

graphical user interface that runs from the raspberry pi. Tis 

application allows the user to run training algorithms on 

recorded audio data. Output with regards to the speech 

recognition will be displayed to the user via the graphical 

user interface. In addition, the FPGA LEDs will also 

provide user feedback. 
 

 
   

Figure 1: High – Level System Overview 

II. SPEECH RECOGNITION 

    Our speech recognition system involves a pipeline that 

begins with a preprocessing stage, a training stage, and a 

testing stage. The preprocessing stage and training stages 

will be performed on a Raspberry Pi 3. The results from 

these stages will be sent to the FPGA, where the testing 

stage will then be conducted. This pipeline will be 

discussed in greater detail later. 

 

A. Preprocessing 

 

    The preprocessing stage is essential in order to get our 

inputs in the ideal format for our classifier. Just as the 

semantics of natural language can be finicky, so can 

comparing speech signals: even from the same individual. 

Speech signals will be initially sampled via a microphone 

at 16,000 Hz and stored in a WAV file. We chose our 

sampling rate based on the fact that 16,000 Hz captures all 

of the details we might want about a particular utterance, 

while avoiding the extra computations that would come 

with oversampling (i.e., having more samples per signal). 

The WAV format was a natural choice for us as it is an 

uncompressed file format for audio signals. 

    Our dataset currently consists of six people’s speech 

sets. Each speech set contain five more subsets, where the 

each subset represents that individual saying every word in 

our vocabulary once. The data is collected using the 

sampling rate and file format mentioned above. We are 

always expanding the dataset to increase the 

generalizability of our classifier.   

    To account for any noise that occurs during 

initialization, we scan through the speech signal and look 

for the first sample that is greater than or equal to 

approximately 40% of the maximum value of the absolute 

value of the signal. We set this point as the starting point 

and take the next 6999 samples per signal. This heuristic is 

necessary in order to achieve a simple, automatic 

preprocessing routine that can grant us good classification 

results during testing. 

    Once we have trimmed our raw signals to 7000 samples, 

we partition each signal into a collection of frames and 

compute the Mel-frequency cepstrum coefficients (MFCC) 

for each frame. MFCCs are features widely used in speech 

recognition. They are extracted from audio signals, with 

the goal of mimicking certain parts of human speech 

perception. In particular, MFCC features mimic the 

logarithmic perception of loudness and pitch of human 

auditory systems through the use of the Mel scale, which 

relates a perceived frequency with its actual frequency.  

    For compatibility with our classifier, we scaled the 

MFCCs so that they fit between -1 and 1, divided by 2, 

and then shifted by half so that our feature vector lies 

between 0 and 1. This reduces the chances of the DNN 

having saturated inputs into any of the hidden or output 

nodes, which are detrimental for learning.  

 

B. Speech Classifier 

 

    As mentioned previously, our speech classifier is a 

feedforward DNN tasked with classifying a vocabulary of 

14 words. The vocabulary consists of the numbers 0-9 and 

the cardinal directions: east, north, south, and west. There 

are several other powerful choices that are often employed 

in speech recognition systems, such as hidden Markov 



models (HMM) and recurrent neural networks (RNN). 

These algorithms tend to be quite sophisticated in terms of 

implementation and require computational resources that 

we do not have with our hardware. Consequently, we 

chose to go with a feedforward DNN for our application.  

    The network has 516 nodes at the input layer (to 

resemble the size of our feature vector), 100 nodes at the 

first hidden layer, 50 nodes at the second hidden layer, and 

14 nodes at the output layer (to resemble the size of our 

vocabulary). For training, the network uses the sigmoid 

function as the activation function and gradient descent 

with weights initialized from sampling a normal 

distribution with parameters dependent on the number of 

hidden layers in the network. The network does not 

currently have a regularization term.  

    In desktop and laptop processors, floating-point 

precision is rarely a concern. Because we plan to 

implement this network in a low-cost FPGA, we are 

limited by the amount of block memory and, hence, are 

restricted in the amount of precision we can utilize. Our 

nodes will be unsigned and encoded using 8 bits and our 

weights will be signed and encoded using 3 to 5 bits. The 

sigmoid function will also have to be approximated by 

using a combinational approximation, which we will 

discuss in greater detail in Section IV. Figure 1 

demonstrates the tight fit that the combinational 

approximation has with the standard sigmoid function. 

Empirical tests show that the error induced by the 

approximation is minimal: significantly less than 1%. Our 

learning algorithm (i.e., gradient descent) is unaffected 

since the training will be off-loaded to the Raspberry Pi 3. 

 

 
Figure 1: Comparison between a sigmoid function with 16-

bit precision with its combinational approximation.  

 

 

C. Classification 

 

    With an understanding of the preprocessing steps and 

the speech classifier, we can now take a bird’s eye view of 

the classification process. In particular, we will split up 

our discussion into a training phase and a testing phase, 

according to where each phase is processed. 

    During the training phase, we perform all of our 

computations on the Raspberry Pi 3. We first preprocess 

all of the raw signals in our dataset. This includes 

trimming, framing, and computing the MFCC feature 

vector for every signal. We then instantiate an instance of 

the DNN to initialize the weights, set the learning rate, and 

set the number of epochs to iterate through. Iterating 

through the training set multiple time via epoch iteration is 

useful for “generating” additional training data for the 

network to learn from. Though this can cause the network 

to overfit the training data, we have tested that 100 epochs 

is generally sufficient to obtain the classification results we 

want (greater than 80%) without overfitting.  

    During the testing phase, we move our computations 

over to the FPGA. First, we approximate the weights 

generated on the Raspberry Pi 3 to values that fall within 

the precision available with 3 to 5 bits. These weights are 

then exported to a text file, converted to an appropriate 

format for the FPGA to read, and then sent to the FPGA 

via serial peripheral interface (SPI). At this point, the 

system switches to testing mode. Any speech signals that 

are recorded from the mic are converted to an appropriate 

format for the FPGA on the Raspberry Pi 3 and then sent 

over for processing. The FPGA will then communicate 

back to the Raspberry Pi 3 with the classification results. 

 

 

III. GRAPHICAL USER INTERFACE 

    The graphical user interface is how the user can easily 

interact with our system. Much of the functions that we 

need for our speech recognition system involve different 

programs that can be run on the command line. By using a 

graphical user interface, we have a central application that 

encompasses all the functionality of the desired programs.  

    This application will allow for audio input and features 

buttons that have various functionalities. These include 

audio processing and training. Other widgets will be used 

to output text and results to the user. 

    Each of the functionalities on the graphical user 

interface application demonstrate successful interfacing 

with the algorithms and hardware. The user interface 

allows the users to connect to the hardware via the SPI 

bus. This in turn, allows data to be sent and received to the 

raspberry pi.  

    We chose to run the application on the raspberry pi with 

a Debian Jesse operating system. This Linux based 

operating system allows for development to be done 



conveniently from a Linux Virtual Machine running 

Ubuntu.  

    The graphical user interface is developed using Qt 

Creator and PyQt. This gave us access to libraries that 

would assist in the design of our graphical user interface. 

The advantage of using Python is that it allows us to easily 

cross compile.  

    Our vision for the system is to be able to record audio 

data of the user speaking any of the integers from 0 – 9 or 

cardinal directions, north south, east, or west. This will be 

achieved through buttons on the user interface. The user 

will press record to start recording and stop to end and 

save the recording. In addition, the user interface also 

allows for the opening of a WAV audio file. This file will 

then still be able to undergo the same processing.  

After pre-processing the data, the user can click on a 

button that will trigger the deep learning algorithm to run 

on the data on the FPGA chip. This feedback would then 

be sent back over the SPI bus and communicated through a 

display text box on the user interface. The FPGA will also 

be able to physically indicate a successful connection 

through the LEDs on the board. 

 

IV. HARDWARE ARCHITECTURE 

    The design of the FPGA-based artificial neural network 

core is based on the work presented in [1C]. We expand 

on the previous work by allowing the synthetization of 

register-transfer level feed-forward neural networks of 

arbitrary layer and node counts. These parameters can be 

changed solely by modifying values in a global include 

file, though they must be determined before compilation. 

In addition to implementing arbitrarily sized networks, 

latency and logic resource utilization can be controlled by 

specifying how parallelized the forward-pass computation 

needs to be. Table [1] below depicts the processing time in 

a 516-100-50-14 feedforward network for various 

parallelization configurations. Each tile has a loop value 

associated with it that specifies how many nodes are 

calculated per processing unit. As seen in Table [x], the 

smaller the loop value, the shorter the processing time. 

This decrease comes at the cost of resource utilization 

(more processing units are needed). 

 

 

Loop Parameters Latency 

loop (1, 10, 10, 2) 645 us 

loop (1, 5, 5, 2) 335.9 us 

loop (1, 1, 1, 1) 83.7 us 

 

Table 1: Latency for Various Design Configurations 

 

 

Along the same line, weight storage can be split between 

on-chip and off-chip RAM in any proportion to decrease 

latency (more on-chip weights) or reduce on-chip memory 

usage (more off-chip weights). Furthermore, we implement 

a combinational approximation of the sigmoid activation 

function with a higher precision than the function used in 

[1C], allowing us to achieve a greater accuracy when 

computing a forward pass through the network. Lastly, we 

determine the precision and range of the network weights 

that will best suit our needs, in addition to expanding the 

storage location of these weights to include an external 

SDRAM. 

    A master control module wraps the ANN core and 

allows for its use in a larger system by distributing weights 

from the SDRAM to the appropriate tiles and 

implementing an SPI interface to facilitate communication 

with an external entity. In addition to these major 

responsibilities, the control unit acts as a mediator between 

an SPI master and the off-chip SDRAM, allowing the 

forwarding of data from one to the other.  

 

A. Processing Unit 

 

    The ANN’s processing unit forms the design’s basic 

execution unit. A processing unit is capable of taking an 8-

bit input value and a 3 to 5-bit weight, multiplying the two, 

and adding the result to a sum stored in a register once 

every clock cycle. It uses fixed-point arithmetic with 8 

fractional bits to stay consistent with the output of 

sig_368p. 

    It is designed to have as small of a logic resource 

utilization footprint as possible to allow for the inclusion 

of a large number in a single design. To this end, it is 

parameterized so that the RTL synthesis tool calculates 

optimal internal register widths based on the size of the 

neural network and the range of the discretized weights. 

Furthermore, to avoid synthesizing multipliers, 

multiplication is performed using shifts and additions, 

which turn out to be less costly when compared with the 

equivalent multiplier logic (compared using look-up-table 

utilization metrics).   

    A processing unit is used to calculate the output of the 

ANN’s nodes. It can be reset to a default value, the node’s 

bias value at any time, allowing it to be used to compute 

the output of an indefinite number of nodes in the same 

layer.  

 

B. Combinational Approximation the Sigmoid Activation 

Function 

 



    Our network makes use of a sigmoid activation function 

implemented using an AND-OR array, a characteristic 

which lends itself well to reprogrammable logic devices 

that have a plethora of LUTs. Originally, we used the 

sig_337p module introduced in [2C] but found that, 

especially in larger networks, it was leading to very 

noticeable discrepancies between the FPGA’s forward-

pass outputs and the ideal outputs as computed by a 

software model of the ANN. To remedy this, we designed 

a higher precision approximation function following a 

similar procedure to the one used in determining 

sig_337p’s AND-OR array. 

    We first mapped signed fixed-precision inputs (3 integer 

bits, 6 fractional bits) to their corresponding sigmoid 

function fixed-precision outputs (8 fractional bits) using a 

C++ program [3C]. This created 8 truth tables with 512 

entries. Each truth table was then passed as input to a 

MATLAB implementation of the Quinne-McClusky logic 

minimization algorithm [3C]. Following a lengthy 

computation, the minimized Boolean equations mapping 

all 512 possible fixed-point inputs to the 8 fractional 

output bits were determined. A Verilog code generation 

program written in C++ was then used to convert the 

MATLAB output to usable HDL, thus creating the 

sig_368p sigmoid approximation module [3C]. 

    Like sig_337p, sig_368p only takes positive input 

values, therefore the 2’s complement of negative values 

must be taken before being passed through the AND-OR 

array. Additionally, the output value of the logic array 

must be subtracted from 1 if the input value is negative.  

    Performing a comparison using Altera’s Quartus 

synthesis tool, sig_368p uses 115 LUTs whereas sig_337p 

makes use of 19 LUTs. While this difference is significant, 

it is an almost insignificant amount when compared to the 

total number of LUT resources available on most FPGAs. 

    Finally, we compared the forward-pass outputs of the 

network using both sigmoid approximation modules. In a 

dummy 516-100-50-14 network using randomly generated 

weights and 100 instances of randomly generated input 

data, sig_368p had an average discrepancy from the ideal 

output layer values of 0.003. In the same scenario, 

sig_337p had an average discrepancy of 0.05.  

  

C. Tiles 

 

    A tile in the hardware-based ANN core is composed of 

several processing units, one sig_368p module, a block 

RAM, and a basic control unit state machine. Moreover, a 

tile is roughly equivalent to a neural network layer, the 

only major difference being that a tile’s constituent 

processing units can be used to calculate the output of 

multiple nodes each. 

    The block RAM in each tile contains the activated data 

of the processing units in that tile. This block RAM also 

feeds directly into the inputs of the following layer, thus 

forming a buffer between layers of the network. Using this 

buffer allows multiple tiles to be pipelined; a tile simply 

has to write all of its outputs to the RAM before it can 

begin accepting inputs from the preceding RAM, rather 

than waiting for the following tile to complete processing.  

    In an ideal situation, this pipelining can halve the 

latency of a forward-pass through the network (latency is 

equal to processing time of one tile rather than two). In 

practice, however, since not all layers are the same size, 

latency through the full network is equal to the processing 

time of the largest tile in the ANN. 

    A simple FSM instructs the processing units to add-

multiply, reset their registers, and transfer their data 

through sig_368p to the block RAM. This FSM sits idle 

unless there is input data available either from the input 

layer of the ANN or the block RAM of the preceding tile. 

 

D. Weights 

 

    The characteristics of our network weights affect almost 

every aspect of our design, including logic resource 

utilization, memory usage, and latency. Early on we saw 

that several people had experienced success using small, 

low-precision weights. This influenced us to experiment 

with weights of size 3 to 5 bits and in the range of [-3, 3] 

as well as [-1.5, 1.5]. In all cases, we avoided instantiating 

multipliers in the processing units and performed 

multiplication using shifts and adds. For our purposes 

(speech recognition), we saw that 5-bit weights in the 

range of [-1.5, 1.5] gave the best classification accuracy as 

most weights in the trained network fell in this range. 

Table [2] below depicts logic resource utilization vs. 

weight width on a Spartan-6 LX9 FPGA. 

    Our overall system had an external SDRAM chip to 

store and read weights from, so running out of overall 

memory was a non-issue. However, running out of on-chip 

memory was a serious issue that affected the processing 

time of the ANN core, as its speed was bottlenecked by the 

SDRAM’s read latency.  

 

 



 
 

Table 2: Resource Utilization on the Spartan-6 FPGA with 

increasing precision of the weights. 

 

 

E. Master Control Unit 

 

    The master control unit is not a part of the ANN core, 

but rather exists to support the core and allow it to 

interface with the rest of our speech recognition system. Its 

main duties are distributing weights to the tile modules by 

interfacing with the SDRAM memory controller and 

allowing an external entity access to the ANN through a 

serial peripheral interface. Additionally, it performs 

miscellaneous functions like dealing with externally 

generated reset conditions and controlling LEDs present 

on our custom circuit board.  

 

III. PHYSICAL HARDWARE 

A. Raspberry Pi  

    Since the processing of analog to digital for audio files 

is such a large computation that requires large amounts of 

processing power it was decided to use a Raspberry Pi 3. 

The processor of the Raspberry Pi 3 utilizes a 1.2 GHz 64-

bit quad-core ARMv8 CPU which will be able to handle 

the conversions in a timely manner. The Raspberry Pi 3 

also handles the inputs from the GUI and processes 

information depending on what the user requests via GUI 

input options. 

B. Application Board 

    The application board contains various components of 

the project all in one. It has a power section, the FPGA 

deep learning computation section, and the applications 

section. All of these different sections work together using 

the digital audio from the Raspberry Pi 3 to identify the 

word spoken using the FPGA's programming and output 

the response using the LED application section.  

    The main components that are involved in this board are 

the power components, the FPGA, SDRAM, LEDS and 

connectors. The flow of data is from the Raspberry Pi 3 to 

the FPGA, back and forth from the SDRAM to FPGA and 

then finally from the FPGA to a particular LED. There are 

14 LEDS, an SDRAM, Raspberry Pi 3 SPI pins and power 

connected to the FPGA.  

    For the power components, a barrel jack connector was 

chosen for the board to supply power. The wall outlet 

power supply of 5V was chosen to supply power to the 

board through the barrel connector. To get the two desired 

voltage levels for this board two voltage regulators were 

chosen. The two regulators would regulate the voltage 

from 5V to 3.3V and then to 1.2V as well. To keep the 

voltage steady and make up for any drops in voltage levels 

or noise decoupling capacitors were placed on the input 

and output voltages for each voltage regulator. This 

reduced the effect the change in voltage would have on the 

rest of the digital circuit. For our applications this is very 

important because the FPGA and SDRAM are dealing 

with very precise digital signals and steady voltages are 

pertinent.  

The Xilinx Inc. XC6SLX9-3TQG144C FPGA was chosen 

based mostly on cost and assembly constraints. It has 144 

pins in a quad-flat package with 102 IO pins which is great 

for connecting all of the components we need. With this 

FPGA at less than 20 dollars with meant IO pins and logic 

elements, it will be great for the application of the project. 

There is a 3.3V main power supply to the FPGA and also a 

second voltage level 1.2V.  

The SDRAM is another important element to the 

application board design. For the design the IC SDRAM 

256MBIT 143MHZ 54TSOP was chosen. This component 

stores information for the deep learning computations. It is 

needed because the FPGA can only store so many 

calculation values, with the SDRAM's help many more 

calculations can be saved for future calculations. All of the 

calculations will be explained further in other sections. 

The SDRAM we chose is also very cost effective and can 

store 256MB of data.  

The LEDS chosen are 1206 SMD green LEDs with a 

voltage drop of 2V across them. They are connected to the 

FPGA with current limiting resistor banks in between 

them. These current limiting resistors are important in 

pulling the current down to a desired level according to 

KCL and KVL since the LED requires 20mA and 2V to 

turn on. These LEDs are labeled 0-9 and North, South, 

East and West. Once the FPGA has computed which word 



was said by the user it will output one result and light up 

the corresponding LED. 

 

II. APPLICATION 

The graphical user interface is how the user can easily 

interact with our system. Much of the functions that we 

need for our speech recognition system involve different 

programs that can be run on the command line. By using a 

graphical user interface, we have a central application that 

encompasses all the functionality of the desired programs.  

This application will allow for audio input and features 

buttons that have various functionalities. These include 

audio processing and training. Other widgets will be used 

to output text and results to the user. 

Each of the functionalities on the graphical user 

interface application demonstrate successful interfacing 

with the algorithms and hardware. The user interface 

allows the users to connect to the hardware via the SPI 

bus. This in turn, allows data to be sent and received to the 

raspberry pi.  

We chose to run the application on the raspberry pi with 

a Debian Jesse operating system. This Linux based 

operating system allows for development to be done 

conveniently from a Linux Virtual Machine running 

Ubuntu.  

The graphical user interface is developed using Qt 

Creator and PyQt. This gave us access to libraries that 

would assist in the design of our graphical user interface. 

The advantage of using Python is that it allows us to easily 

cross compile.  

Our vision for the system is to be able to record audio 

data of the user speaking any of the integers from 0 – 9 or 

cardinal directions, north south, east, or west. This will be 

achieved through buttons on the user interface. The user 

will press record to start recording and stop to end and 

save the recording. In addition, the user interface also 

allows for the opening of a WAV audio file. This file will 

then still be able to undergo the same processing.  

After pre-processing the data, the user can click on a 

button that will trigger the deep learning algorithm to run 

on the data on the FPGA chip. This feedback would then 

be sent back over the SPI bus and communicated through a 

display text box on the user interface. The FPGA will also 

be able to physically indicate a successful connection 

through the LEDs on the board.  

 

 

V. CONCLUSION 

    Our project DeepGate was inspired by the capabilities 

and research possibilities of neural networks and FPGAs. 

Through research, design, development, and testing, the 

team was able to create a prototype for a speech 

recognition application that combines cutting-edge 

technologies.  

    This was accomplished in part by leveraging team 

member’s experience and interests in FPGA and neural 

network research. Our goals were determined with the 

consideration of budget, time, and skill limitations. 

Overall, DeepGate achieved its objective as a usable 

prototype and a valuable learning experience for 

professional engineering work in both research and 

industry. 
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